Example In a ballistics demonstration a police officer fires a bullet of mass 50.0 g with speed 200 m s⁻¹ (see Table 6.2) on soft plywood of thickness 2.00 cm. The bullet emerges with only 10% of its initial kinetic energy. What is the emergent speed of the bullet ?

Answer Th initial kinetic energy of the bullet is $mv^2/2 = .000$ J. It has a final kinetic energy of 0.1×10^7 0 = 100 J. If v_f is the emergent speed of the b¹ let,

$$\frac{1}{2} nv_f^2 = 100 \text{ J}$$

$$v_f = \sqrt{\frac{2 \times 100 \,\mathrm{J}}{0.05 \,\mathrm{kg}}}$$

$$= 63.2 \text{ m s}^{-1}$$

The speed is reduced by approximately 68% (not 90%).